Supported in: Batch
K-means clustering is an unsupervised machine learning algorithm. It groups dataset vectors into k clusters. The k value is determined by computing the best silhouette score of the specified range between minimum k and maximum k. Number of k values defines how many k values should be tried within this range, inclusive of the boundaries.
Transform categories: Other
Argument values:
feature_columnInput:
| feature_column |
|---|
| [ 0.05, 3.1, 2.3 ] |
| [ 1.0, 3.1, 2.3 ] |
| [ 1.0, 3.5, 2.3 ] |
| [ 19.0, 12.3, -1.4 ] |
Output:
| feature_column | cluster_id |
|---|---|
| [ 1.0, 3.1, 2.3 ] | 0 |
| [ 1.0, 3.5, 2.3 ] | 0 |
| [ 19.0, 12.3, -1.4 ] | 1 |
| [ 0.05, 3.1, 2.3 ] | 2 |
Argument values:
feature_columnInput:
| feature_column |
|---|
| [ 0.05, 3.1, 2.3 ] |
| null |
| [ 1.0, 3.1, 2.3 ] |
| [ 1.0, 3.5, 2.3 ] |
| [ 19.0, 12.3, -1.4 ] |
Output:
| feature_column | cluster_id |
|---|---|
| [ 1.0, 3.1, 2.3 ] | 0 |
| [ 1.0, 3.5, 2.3 ] | 0 |
| [ 19.0, 12.3, -1.4 ] | 1 |
| [ 0.05, 3.1, 2.3 ] | 2 |
Argument values:
feature_columnInput:
| feature_column |
|---|
| [ 0.05, 3.1, 2.3 ] |
| [ 1.0, 3.5, 2.3 ] |
| [ 19.0, 12.3, -1.4 ] |
Output:
| feature_column | cluster_id |
|---|---|
| [ 19.0, 12.3, -1.4 ] | 0 |
| [ 0.05, 3.1, 2.3 ] | 1 |
| [ 1.0, 3.5, 2.3 ] | 2 |