You can read and write the column descriptions and column typeclasses for your output datasets in Code Repository Transforms.
You can add output column descriptions to your output datasets by providing the optional column_descriptions argument to the write_dataframe() function of the TransformOutput.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14from transforms.api import transform, Input, Output @transform( my_output=Output("/my/output"), my_input=Input("/my/input"), ) def my_compute_function(my_input, my_output): my_output.write_dataframe( my_input.dataframe(), column_descriptions={ "col_1": "col 1 description" } )
The column_typeclasses property gives back a structured Dict<str, List<Dict<str, str>>>, which maps column names to their column typeclasses.
List is a Dict[str, str] object.
Dict object must only use the keys "name" and "kind". Each of these keys maps to the corresponding string the user wants.An example column_typeclasses value would be {"my_column": [{"name": "my_typeclass_name", "kind": "my_typeclass_kind"}]}.
Copied!1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18from transforms.api import transform, Input, Output @transform( my_output=Output("ri.foundry.main.dataset.my-output-dataset"), my_input=Input("ri.foundry.main.dataset.my-input-dataset"), ) def my_compute_function(my_input, my_output): recent = my_input.dataframe().limit(10) existing_typeclasses = my_input.column_typeclasses existing_descriptions = my_input.column_descriptions my_output.write_dataframe( recent, column_descriptions=existing_descriptions, column_typeclasses=existing_typeclasses )